Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Bull ; 40(4): 517-532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194157

RESUMO

Primates exhibit complex brain structures that augment cognitive function. The neocortex fulfills high-cognitive functions through billions of connected neurons. These neurons have distinct transcriptomic, morphological, and electrophysiological properties, and their connectivity principles vary. These features endow the primate brain atlas with a multimodal nature. The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex, enabling a multimodal neuronal atlas to be established in great detail: (1) single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references, covering all major transcriptomic cell types; (2) patch-seq links the morphological and electrophysiological features to the transcriptomic reference; (3) multicell patch-clamp delineates the principles of local connectivity. Here, we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex.


Assuntos
Neurônios , Transcriptoma , Animais , Neurônios/metabolismo , Encéfalo , Primatas , Eletrofisiologia
2.
Cell Mol Neurobiol ; 44(1): 8, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123823

RESUMO

Multimodal analysis of gene-expression patterns, electrophysiological properties, and morphological phenotypes at the single-cell/single-nucleus level has been arduous because of the diversity and complexity of neurons. The emergence of Patch-sequencing (Patch-seq) directly links transcriptomics, morphology, and electrophysiology, taking neuroscience research to a multimodal era. In this review, we summarized the development of Patch-seq and recent applications in the cortex, hippocampus, and other nervous systems. Through generating multimodal cell type atlases, targeting specific cell populations, and correlating transcriptomic data with phenotypic information, Patch-seq has provided new insight into outstanding questions in neuroscience. We highlight the challenges and opportunities of Patch-seq in neuroscience and hope to shed new light on future neuroscience research.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Análise de Sequência de RNA , Técnicas de Patch-Clamp , Transcriptoma
3.
Nat Commun ; 14(1): 7497, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980356

RESUMO

The degenerative process in Parkinson's disease (PD) causes a progressive loss of dopaminergic neurons (DaNs) in the nigrostriatal system. Resolving the differences in neuronal susceptibility warrants an amenable PD model that, in comparison to post-mortem human specimens, controls for environmental and genetic differences in PD pathogenesis. Here we generated high-quality profiles for 250,173 cells from the substantia nigra (SN) and putamen (PT) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian macaques and matched controls. Our primate model of parkinsonism recapitulates important pathologic features in nature PD and provides an unbiased view of the axis of neuronal vulnerability and resistance. We identified seven molecularly defined subtypes of nigral DaNs which manifested a gradient of vulnerability and were confirmed by fluorescence-activated nuclei sorting. Neuronal resilience was associated with a FOXP2-centered regulatory pathway shared between PD-resistant DaNs and glutamatergic excitatory neurons, as well as between humans and nonhuman primates. We also discovered activation of immune response common to glial cells of SN and PT, indicating concurrently activated pathways in the nigrostriatal system. Our study provides a unique resource to understand the mechanistic connections between neuronal susceptibility and PD pathophysiology, and to facilitate future biomarker discovery and targeted cell therapy.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Animais , Humanos , Camundongos , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo , Macaca , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
4.
Epilepsy Res ; 198: 107257, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989006

RESUMO

Acquired temporal lobe epilepsy (TLE) characterized by spontaneous recurrent seizures (SRS) and hippocampal inhibitory neuron dysfunction is often refractory to current therapies. Gap junctional or electrical coupling between inhibitory neurons has been proposed to facilitate network synchrony and intercellular molecular exchange suggesting a role in both seizures and neurodegeneration. While gap junction blockers can limit acute seizures, whether blocking neuronal gap junctions can modify development of chronic epilepsy has not been examined. This study examined whether mefloquine, a selective blocker of Connexin 36 gap junctions which are well characterized in inhibitory neurons, can limit epileptogenesis and related cellular and behavioral pathology in a model of acquired TLE. A single, systemic dose of mefloquine administered early after pilocarpine-induced status epilepticus (SE) in rat reduced both development of SRS and behavioral co-morbidities. Immunostaining for interneuron subtypes identified that mefloquine treatment likely reduced delayed inhibitory neuronal loss after SE. Uniquely, parvalbumin expressing neurons in the hippocampal dentate gyrus appeared relatively resistant to early cell loss after SE. Functionally, whole cell patch clamp recordings revealed that mefloquine treatment preserved inhibitory synaptic drive to projection neurons one week and one month after SE. These results demonstrate that mefloquine, a drug already approved for malaria prophylaxis, is potentially antiepileptogenic and can protect against progressive interneuron loss and behavioral co-morbidities of epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Fármacos Neuroprotetores , Estado Epiléptico , Ratos , Animais , Fármacos Neuroprotetores/efeitos adversos , Mefloquina/efeitos adversos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Convulsões/induzido quimicamente , Hipocampo , Epilepsia/patologia , Pilocarpina/toxicidade , Modelos Animais de Doenças
5.
Adv Sci (Weinh) ; 9(23): e2200559, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713240

RESUMO

Improved understanding of the etiologies of delirium, a common and severe neuropsychiatric syndrome, would facilitate the disease prevention and treatment. Here, the authors invesitgate the role of circadian rhythms in the pathogenesis of delirium. They observe perturbance of circadian rhythms in mouse models of delirium and disrupted clock gene expression in patients with delirium. In turn, physiological and genetic circadian disruptions sensitize mice to delirium with aggravated cognitive impairment. Likewise, global deletion of E4bp4 (E4 promoter-binding protein), a clock gene markedly altered in delirium conditions, results in exacerbated delirium-associated cognitive decline. Cognitive decline in delirium models is attributed to microglial activation and impaired long-term potentiation in the hippocampus. Single-cell RNA-sequencing reveals microglia as the regulatory target of E4bp4. E4bp4 restrains microglial activation via inhibiting the ERK1/2 signaling pathway. Supporting this, mice lacking in microglial E4bp4 are delirious prone, whereas mice with E4bp4 specifically deleted in hippocampal CA1 neurons have a normal phenotype. Mechanistically, E4bp4 inhibits ERK1/2 signaling by trans-repressing Mapk1/3 (genes encoding ERK1/2) via direct binding to a D-box element in the promoter region. These findings define a causal role of clock dysfunction in delirium development and indicate E4bp4 as a regulator of cognition at the crosstalk between circadian clock and delirium.


Assuntos
Relógios Circadianos , Delírio , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ritmo Circadiano/genética , Cognição , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...